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Abstract. Entropy maximization (EM) is a method that can link functional traits and
community composition by predicting relative abundances of each species in a community
using limited trait information. We developed a complementary suite of tests to examine the
strengths and limitations of EM and the community-aggregated traits (CATs; i.e., weighted
averages) on which it depends that can be applied to virtually any plant community data set.
We show that suites of CATs can be used to differentiate communities and that EM can
address the classic problem of characterizing ecological niches by quantifying constraints
(CATs) on complex trait relationships in local communities. EM outperformed null models
and comparable regression models in communities with different levels of dominance,
diversity, and trait similarity. EM predicted well the abundance of the dominant species that
drive community-level traits; it typically identified rarer species as such, although it struggled
to predict the abundances of the rarest species in some cases. Predictions were sensitive to
choice of traits, were substantially improved by using informative priors based on null models,
and were robust to variation in trait measurement due to intraspecific variability or
measurement error. We demonstrate how similarity in species’ traits confounds predictions
and provide guidelines for applying EM.
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INTRODUCTION

Research on functional traits and their relationship to

abiotic gradients and to community composition and

function has become a major focus of community

ecology (e.g., Diaz et al. 1998, Ackerly and Cornwell

2007, Kraft et al. 2008). Due to the difficulty of

parameterizing species-level models and to the appeal

of finding general laws in community ecology, some

ecologists have proposed working with functional traits,

which are fewer in number and may encode information

about both community and plant function (McGill et al.

2006). The entropy maximization model (EM) of

Shipley et al. (2006) can potentially link such traits to

community composition at the species level by predict-

ing relative abundances of each species in a community

using limited trait information. EM also offers a

framework for quantifying the relationship of functional

traits to environmental gradients (Shipley 2009c), for

characterizing functional redundancy of species in

communities, and for testing the sensitivity of trait-

based inferences about community composition to trait

variation from measurement error and intraspecific

variation.

In this paper, we develop and apply a novel set of tests

to critically evaluate the predictive power of EM under a

variety of conditions. EM predicts the most likely

community abundance patterns, given observed con-

straints, and goes a step beyond earlier models such as

the neutral theory of biodiversity (Hubbell 2001) that

seek to predict species abundance distributions while

ignoring species identity (e.g., neutral theory does not

determine which species is most abundant, only the

abundance of the dominant species); EM predicts the

relative species abundance distribution (RSA) of partic-

ular species based on their traits. The preliminary

application of EM by Shipley et al. (2006) received

early criticism (Marks and Muller-Landau 2007, Rox-

burgh and Mokany 2007, Haegeman and Loreau 2008,

2009), but despite recent optimism (He 2010, McGill

and Nekola 2010) and further work by Shipley (2009c),

it remains little tested. EM’s potential accuracy is

particularly appealing (Shipley et al. [2006] report r2 ¼
0.96 between predicted and observed abundance)

compared to other attempts to predict RSAs, which

typically account for only 10–30% of the variance

(McGill and Nekola 2010). However, many questions

remain unanswered. How well does EM predict RSAs in

communities with contrasting dominance and diversity

patterns? How does it deal with species with similar

traits? How do the quality and quantity of trait data

affect predictions?
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A number of distinct applications of entropy-based

methods have emerged in recent ecological literature,

and it is important to understand the context of our

work in light of this new (to ecology) inductive

framework. We distinguish between the maximum

entropy formalism (MEF; Jaynes 1957, 2003), which is

a general optimization method that can be applied to a

variety of problems, and the specific application by

Shipley et al. (2006) of MEF based on trait constraints

in community ecology (denoted by EM). The common

thread among MEF models is that the user minimizes

bias in a predicted probability distribution with respect

to a set of constraints on the moments of that

distribution. One class of MEF models in ecology

predicts macroecological patterns such as species abun-

dance distributions or species–area relationships based

on statistical considerations, and works in the currency

of the number of individuals or species, or in total

energy (Pueyo et al. 2007, Harte et al. 2008, 2009). Other

applications predict the spatial distribution of a species

based on the environmental conditions where it is

observed (‘‘Maxent’’; Phillips et al. 2006). Other

applications of MEF in ecology are also promising but

have received relatively less attention and development

(Dewar and Porté 2008, Volkov et al. 2009). The model

that we consider predicts RSAs along environmental

gradients based on species functional traits (Shipley et

al. 2006, 2007, Haegeman and Loreau 2008, 2009,

Shipley 2009a, b).

Conceptually, EM provides a model for habitat

filtering (Keddy 1992, Dı́az et al. 1998) that translates

from plant functional traits to local community compo-

sition. The idea behind habitat filtering is that environ-

mental conditions select for particular traits (community

selection), and better-suited species pass through filters

more readily, resulting in higher abundance than other

species. Recent studies have shown strong correlations

between convergent functional trait values and ecolog-

ical strategies along environmental gradients (Westoby

and Wright 2006, Ackerly and Cornwell 2007, McGill et

al. 2007). EM connects models for functional trait

variation along gradients back to species-level patterns

by providing a mathematical formalism that uses the

species’ functional traits to predict their relative

abundance.

The EM approach can be understood as follows. We

sample a set of distinct local communities (e.g., across

succession stages, elevational gradients, and so forth).

Each local community type is sampled at multiple sites.

We define the local species pool to contain all species

observed at a collection of samples across a particular

local community type. The regional species pool contains

all species observed in all samples. We seek to predict the

RSA in each local community from the regional pool,

based on trait information for each species (e.g., leaf

area, height). Species from the regional pool are indexed

i ¼ 1, 2, ..., S; traits are indexed j ¼ 1, 2, ..., T; and for

communities k ¼ 1, 2, . . . , C, we denote the RSA as

vector pk ¼ ( p1k, p2k, ..., pSk). The information used to

make the prediction is a set of T trait values measured
for each of the S species, which define a trait vector ti¼
(ti1, ti2, . . . tiT) for each species i.

We summarize local community-level trait informa-
tion as community-aggregated traits (CATs), which are

the abundance-weighted average values of each trait j in
each local community k (tjk). In other words, we use

these CATs to represent the operation of habitat
filtering based on the typical trait values of plants found
in each local community. For each local community k,

the CATs can be calculated as follows:

�tjk ¼
XS

i¼1

piktij for j ¼ 1; 2; . . . T k ¼ 1; 2; . . . ;C: ð1Þ

Because CATs have been shown to describe community-
level variation along abiotic gradients at multiple scales,

we can take advantage of the fact that they generally
vary relatively smoothly along environmental gradients

(Garnier et al. 2004, Ackerly and Cornwell 2007,
Lavorel et al. 2008 [and 41 references in their Appendix
1]) to predict CATs. CATs can be predicted for each

local community by using splines fit to empirical CATs
calculated from (1) with multiple communities along the

gradient. Using these imputed CATs, EM predicts the
RSA in each community, pk.

EM requires the user to specify the possible system
states, prior distribution for abundance, and constraints
(Haegeman and Loreau 2009; see Appendix A). First,

the system states are given by pk, the relative abundance
of each species in the community. Second, the user must

specify a prior distribution qk (a vector for community k)
that reflects the state of knowledge about the RSA

before imposing constraints. Previous applications of
EM have placed a uniform prior on pk; this implies that
all species in the potential species pool are equally likely

to occur in a local community. Third, for each trait, pk
must satisfy linear constraints based on the CATs in

Eq. 1. In addition, the pik must sum (over i ) to one and
be nonnegative. MEF finds the vector pk that maximizes

the local community’s relative entropy function (i.e.,
minimizing information and/or maximizing similarity to
the prior):

�
XS

i

pik ln
pik

qik

� �
ð2Þ

subject to the constraints (Eq. 1) and normalization.

Given tjk, the maximization is readily solved for pk using
the method of Lagrange multipliers, to yield the

following (Jaynes 2003):

p̂ik ¼ qik exp k0k �
XT

j¼1

kjk tij

 !

=X
S

i¼1

exp k0k �
XT

j¼1

kjktij

 !

ð3Þ

where the kj are the Lagrange multipliers. There is one kj
for each trait and k0 corresponds to the normalization

constraint on pk. When the traits are standardized such
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that each is restricted to the interval [0,1] (Petchey and

Gaston 2006), the absolute values of the kj indicate the

relative predictive strength of the functional traits in

predicting species abundances (Phillips et al. 2006). This

method is applied independently to each local commu-

nity (Shipley et al. 2006).

EM can be conceptualized in terms of two compo-

nents. First, the CATs describe the constraint compo-

nent, which defines a group of RSAs that are consistent

with functional constraints (Eq. 1) and are denoted as

the feasible set. This constraint component restricts the

possible combinations of trait vectors and can be

conceptualized as the niche constraints on the assem-

blages of species that can occupy a particular local

community (see Discussion for an examination of this

assertion). Entropy is not involved in these constraints.

Second, the entropy component selects the RSA with

maximum similarity to the prior from the feasible set.

The maximum entropy condition ensures that the RSA

contains the minimum information about the species

identity of a randomly selected unit of biomass from

the local community. EM therefore provides the only

unbiased RSA with respect to the prior and observed

constraints (Shipley 2009a). If EM performs well, it

can be either because the traits are extremely con-

straining, or because the community tends more

toward the prior than would be required by trait

constraints alone. Note, however, that the justification

for maximizing entropy is based on information theory

and has no interpretation in terms of ecological

mechanisms.

We assessed the predictive value of functional traits

to determine abundance using a suite of complemen-

tary tests. We applied the model to the same set of

successional sequences of low-diversity, abandoned

French vineyards that Shipley et al. (2006) studied

(‘‘vineyard data’’), and also an elevational transect in

the highly diverse fynbos shrubland of the Cape

Floristic Region of South Africa (Proches et al.

2003). The fynbos data set potentially offers further

insight into EM because it is more diverse, contains a

wider array of dominance patterns, was collected over

larger spatial scales, and contains more rare and

functionally similar species than the vineyard data. We

first test the predictability of CATs along a gradient.

We then assess the power of EM to use traits to

predict RSAs using null models, cross validation, and

comparison to regression models. By comparing

predictions made using regional vs. local species pools,

and incorporating prior information reflecting propa-

gule availability, we use EM to explore how recruit-

ment limitation affects local community assembly. We

also test the robustness of predictions to functional

trait variability. Finally, we discuss how EM’s

predictions could shed light on functional redundancy

and provide guidelines for applying EM to other data

sets.

METHODS

Data

We applied entropy maximization to two contrasting

species abundance data sets. The first comes from 12 old

fields (local community samples) in a Mediterranean

climate region in southern France (Garnier et al. 2004),

as analyzed by Shipley et al. (2006). These fields were

formerly vineyards abandoned at different times and

constitute a chronosequence (2, 2, 7, 8, 8, 11, 12, 26, 29,

35, 40, and 42 years since abandonment). These samples

consist of single 0.5 3 0.5 m sites. Wiegart (1962) has

shown that this is an appropriate, minimum sample area

for such herbaceous communities. Following Shipley et

al. (2006), we truncated the data to retain 30 species,

based on abundance in the regional community, which

constitute 80% of the regional biomass. The local

community samples constituting the chronosequence

consisted of 12, 9, 12, 10, 8, 15, 13, 4, 4, 4, 6, and 4

species, respectively. The following traits were measured

for each species, defining a trait vector (supplying tij in

Eq. 1): proportion perennial, seed number, seed

maturation date, specific leaf area, aboveground vege-

tative mass, stem mass, leaf mass, and height (see

Garnier et al. 2004).

We then examined eight fynbos communities sampled

along an elevational gradient in the Baviaanskloof

Mountains of the Cape Floristic Region of South Africa

(Proches et al. 2003). This data set consisted of 42 53 10

m local community samples along a 50-km transect

(Appendix B: Fig. B1), partitioned into eight local

communities (Appendix B: Fig. B2) spanning elevational

range intervals of 120 m each, from 250 m to 1205 m. In

contrast to the treatment of Shipley et al. (2006; see

Discussion), local communities were characterized by

multiple samples within the same elevation range (5, 5, 7,

4, 4, 7, 7, and 3 samples per local community, by

increasing elevation), with individual samples separated

spatially (without replication) by hundreds to thousands

of meters. The diversity and spatial heterogeneity in

fynbos necessitates multiple samples of this size to

accurately characterize communities. We retained the 43

most abundant species in the region, based on percent

cover, constituting 77% of regional cover (in parallel to

Shipley et al. 2006). The local communities are much

more diverse than the vineyard communities, consisting

of 18, 21, 28, 19, 28, 27, 25, and 21 species, respectively.

There is a strong gradient in this system: temperature

decreases and precipitation increases with elevation

(Rebelo et al. 2006). The average daily minimum

temperature of the coldest month (July) ranges from 18

to 68C and mean annual precipitation ranges from 300

to 700 mm. Using Goldblatt and Manning’s (2000)

Conspectus of the Cape Floristic Region, we obtained

the following traits to provide information on plant

function perennial (yes/no), succulent (yes/no), plant

height, leaf longevity (,1 year, 1–3 years, .3 years),

flowering duration, and pubescence (yes/no, on either
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stems or leaves). We measured herbarium specimens to

obtain leaf width, leaf perimeter2/area, leaf area/twig

basal diameter, and stem length/stem basal diameter.

Analysis

We will outline the questions about EM that our

analyses address and the methods used to answer them,

as summarized in Table 1. We begin by describing three

tests we created that are relevant to a number of the

questions. These tests are all performed using a uniform

prior, for comparison to the results of Shipley et al.

(2006) except where explicitly noted otherwise. All three

tests (T) start with the observed CATs (see Eq. 1):

1) Tloc predicts RSAs for each local community given

observed CATs, selecting only from species actually

observed in the respective local community.

2) Treg predicts RSAs for each local community given

observed CATs, selecting from all species in the regional

pool. Comparison to Tloc gives a measure of the species’

similarity in trait space. Treg is equivalent to the analysis

in Shipley et al. (2006: Fig. 2).

3) Tsm uses the same species pool as Treg to predict

CATs from smoothing splines fit to the observed CATS

for each local community along the gradient (instead of

using observed CATs). This tests the finding of Shipley

et al. (2006) that RSAs predictions are similarly accurate

whether observed or predicted CATs are used. This test

is analogous to the second analysis of Shipley et al.

(2006: Fig. 3), although more robust because we do not

employ smoothing techniques on the abundances.

Are CATs predictable along environmental gradi-

ents?—Shipley et al. (2006) demonstrated that CATs

varied regularly for the vineyard data so we asked

whether that predictability generalized to more diverse

systems with different gradients. For both data sets, we

predicted CATs along a gradient by fitting a smoothing

cubic spline regression (Schumaker 2007) through the

empirical values, and we reported the correlation of

empirical values with regression predictions (Fig. 1). If

CATs varied regularly along the gradient, we presumed

that they described the effects of habitat filtering in

response to the gradient (Petchey and Gaston 2006).

How sensitive are abundance predictions to deviations

from observed CATs?—We compared the results of Tsm,

which uses predicted CATs at all points along the

gradient, to Treg, which uses observed CATs to evaluate

the sensitivity to CAT values (Fig. 2). We also used

hold-one-out cross validation for CAT predictions

TABLE 1. Methods used to explore entropy maximization (EM) and general conclusions.

Quantity varied Questions Main conclusions

CAT predictability Are CATs predictable along environmental
gradients?

CATs correlated strongly with gradients.

Predicting CATs How sensitive are abundance predictions to
deviations from observed CATs?

Predictions were very sensitive to CAT accuracy
indicating their predictive value.

Abundance predictions decreased under CAT
cross validation but predicted CATs remained
sufficient to differentiate communities.

Richness How well does EM perform with varying
richness?

Better predictions in simpler communities.
Predictions improved as richness decreased, but

decreased below a certain threshold when
CATs could not be easily fulfilled by
remaining species.

Trait similarity How does trait vector similarity affect prediction
accuracy?

Functional similarity within guilds reduces
predictive power.

Effects of trait similarity on EM depend on
complex combinations of species.

Number of traits How much trait information is necessary or
sufficient?

Steady decline in prediction accuracy when
fewer traits were used.

Which traits provide the most predictive power? Lagrange multipliers identified the most
important traits.

Do quantitative vs. categorical traits matter? Categorical and quantitative traits have
comparable predictive power.

Priors How do different priors affect prediction
accuracy?

Regional priors were better than uniform priors,
indicating importance of regional abundance
for local abundance.

Can priors be used to model dispersal limitation
effects?

Subregional priors performed best in Fynbos,
suggesting importance of dispersal limitation
in that system.

Trait accuracy Are predictions sensitive to intraspecific trait
variation or measurement error at the species
level?

Predictions were robust to perturbations in trait
accuracy at 5% and deviated more
substantially with 20% perturbations.

Null models What are the appropriate null models to
compare against predictions?

Predictions were better than 98.4% of null
models except in two cases.

Does EM perform better than null models?
EM vs. regression Does EM perform better than regression

models, using the same information?
EM outperformed regression models in all cases.

Note: CATs are community-aggregated traits (weighted average).
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following Marks and Muller-Landau (2007). Each local

community was sequentially withheld from the spline fit
to CATs along the gradient and its CATs were

predicted.

How well does EM perform with varying species

richness?—We began by comparing the results for the

vineyard and fynbos data, which exhibited contrasting

patterns of dominance and diversity at the local

community level (Appendix D: Figs. D8–11). To
evaluate the effects of local vs. regional species pools,

we compared the predictions of Tloc and Treg. We also

implemented Tloc, Treg, and Tsm while varying the

number of species used to define a local community

(Fig. 3). The number of species in each data set was

varied (vineyard, 9–30 species; fynbos, 11–43 species) by
removing the rarest species in the truncated regional

community at each step. We calculated prediction

surfaces that show model fit on the z-axis, number of

species on the x-axis, and number of traits on the y-axis

in two ways: (1) using the CATs calculated from all

species, and (2) recalculating CATs each time the species

pool was reduced. Case 1 corresponds to using the most
complete information possible, which is necessary when

CATs are predicted from splines. Case 2 corresponds to

predictions focused on dominant species, i.e., when

sampling is a problem and some species are omitted

from the model (as shown in Appendix D).

How does trait vector similarity affect prediction

accuracy?—Assessing the effect of trait vector similarity
on predictions is challenging because there are many

possible linear combinations of trait vectors that are

substitutable for a particular species’ trait vector rather

than simple pairs of similar species. One cannot isolate

the effect of adding or subtracting one potentially

similar species from the species pool because predictions
depend on all other present species. Thus we summa-

rized trait vector similarity based on (1) community-level

and (2) species-level trait vector similarity. For commu-

nity-level similarity, we compared the prediction accu-

racy under Tloc (measured by h) for each local

FIG. 1. Environmental heterogeneity as reflected in the variation of observed (points) and fitted (lines) CATs (community-
aggregated traits) along the elevational gradient for the South African fynbos data. Elevation has been grouped into eight bins,
each spanning 250 m. CATs are calculated as the abundance-weighted average of traits in the local community. Leaf and stem
measurements were made in millimeters.
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community (12 in the vineyard, 8 in the fynbos) to the

trait vector dissimilarity in the respective local commu-

nity. The trait vector dissimilarity was computed as the

mean of all pairwise Manhattan distances of locally

observed species divided by the number of traits (to

make data sets comparable).

To examine species-level similarity, we tested the

hypothesis that if nearest neighbor distance in trait space

decreases, then abundance predictions become less

accurate. We measured nearest neighbor distance with

the Manhattan distance and prediction accuracy as the

absolute error between predicted and observed abun-

dance for each species. We then plotted the changes in

the nearest neighbor distances and prediction error

changed between Tloc and Treg. The nearest neighbor

distances typically decreased from Tloc to Treg because

Treg contains more species.

How much trait information is necessary or sufficient?

Which traits provide the most predictive power? Do

quantitative vs. categorical traits matter?—To determine

the predictive value of different numbers of traits, for

each of Tloc, Treg, and Tsm, the quantity of traits was

FIG. 2. Variation of French vineyard and South African fynbos prediction success (h, q) for different tests of entropy
maximization, EM. Predictions for all local communities (8 in the vineyard and 12 in the fynbos) are shown on the same plot. Tests
were applied with the regional species pool and all traits. Tloc (local) fits the model using only species observed in the local
community while Treg (regional) and Tsm (smoothed) use all species from the regional community. Tsm uses predicted CATs while
Tloc and Treg use observed CATs. Uniform priors are used for the first three tests shown; priors generated from the subregional and
regional species pools are also used with Tsm. Gray dots have been jittered along the abscissa to show their density. Gray lines
indicate 1:1 agreement between predicted and observed relative abundance of species (log–log scale); q is the Pearson correlation
coefficient between ranks.
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varied by removing those with the lowest predictive

value, determined as the lowest mean Lagrange multi-

plier across all local communities. Lagrange multipliers

indicate the predictive values of traits.

How do different priors affect prediction accuracy? Can

priors be used to model dispersal limitation effects?—We

considered the effects of using different priors to reflect

different empirical expectations. No studies of which we

are aware predict uniform RSAs; thus a better null

model than equal a priori abundance should account for

similarity to the surrounding regional community. In the

absence of any expectations about niche relationships, a

species might be abundant in a local community simply

because it is abundant in the regional community. This

could occur even if all seeds arrive randomly in the local

community; more abundant species would provide more

seeds. To account for this phenomenon, we used the

regional RSA as the prior.

The prior can also reflect other mechanisms that

might alter abundance expectations that are not

included as traits, such as dispersal limitation. For

example, if random seed arrival is expected to be

important, as previously discussed, but at smaller spatial

scales than the entire region, one could use the RSA

composed from plots nearby the local community of

interest. We did this by constructing prior RSAs from

only the local communities adjacent to the community

of interest along the environmental gradient; i.e., the

prior RSA for four-year-old vineyards comes from

vineyards between 0 and 8 years old. We termed such

RSAs subregional RSAs and calculated them by

averaging the RSAs of five local communities ranging

from two below to two above the focal community along

the gradient (e.g., for elevational community 4, the prior

was the average RSA from communities 2–6). To

account for sampling error, we generated random

samples from the regional and subregional RSAs and

used these as priors. We compared these priors to

random samples from a uniform distribution to

understand the sensitivity of predictions to different

FIG. 3. Prediction success (h) for varying numbers of species and traits under three tests (Tloc, Treg, Tsm). The trait with the
lowest mean LaGrange multiplier across all local communities (when using all species) was omitted at each step. The species with
the lowest regional abundance was omitted at each step. All three tests then proceeded as if the regional species pool were this
truncated pool. Initially, h increases with decreasing number of species as trait vector similarity decreases. Then h decreases when
very few species remain because important species are missing that are necessary to fulfill the CATs.
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priors. See Appendix D: Figs. D14–17 for an alternate

way to construct priors based lognormal and exponen-

tial distributions.

Are predictions sensitive to intraspecific trait variation

or measurement error at the species level?—To test the

sensitivity of predictions to trait measurement, we used a

perturbation analysis on the traits. Because we have no

information on intraspecific variance or measurement

error for the quantitative traits we used, we examined

the consequences of changing the traits’ values (pertur-

bation) by both small (within 5% of observed values)

and large amounts (within 20% of observed values) on

the model predictions. Larger perturbations address the

recent focus on large intraspecific variability in func-

tional ecology; these perturbations cover the typical

interquartile range of traits studied by Albert et al.

(2010). Perturbed traits were chosen for each species

from a uniform distribution ranging from 5 (or 20)%
above to 5 (or 20)% below observed trait values. Next,

we proceeded in one of two ways. First, we recalculated

the CATs using the perturbed traits, and then applied

EM. This examined whether the predictions were an

idiosyncratic product of our data or only relevant for the

small perturbations. Second, we used the perturbed

traits with the observed CATs. This tested the sensitivity

of the predictions to the intraspecific variability and

measurement error. Note that we did not perturb

categorical traits (1 in the vineyard, 4 in the fynbos)

because it was unclear how to treat these types of traits

and it seemed reasonable to assume that they were

measured without error. We ran 500 model replicates for

each of the three tests (Tloc, Treg, and Tsm).

Does EM perform better than null models?—Predic-

tions were compared to null models based on permuta-

tion of the trait vectors (Roxburgh and Mokany 2007,

Shipley et al. 2007). Under the null hypothesis, traits do

not influence species’ abundance (Manly 2006, Shipley

et al. 2007). Thus we randomly reassigned trait vectors

to species, recalculated the CATs, and predicted

abundances. The only attribute changed in the null

model for a particular data set or test was the trait

vector associated with each species. Null models were

computed for each test shown in Fig. 2. Importantly,

this null model retains the covariance among traits and

maintains the same trait vector similarity as the

observed data. The null hypothesis contrasts the

expectation that if species’ traits respond to the

environment, then species with similar traits will likely

co-occur. The alternative of using completely random

traits (Roxburgh and Mokany 2007) or randomizing a

single trait at a time is not appropriate when covariance

is strong among traits because this allows for biologi-

cally unrealistic species and substantially reduces trait

vector similarity. Such unrealistic trait vectors will be

much more restricted by the constraint component and

tend to overestimate the support for the null hypothesis.

We report the proportion of predictions better than the

true model obtained from 500 such permutations.

Does EM perform better than regression models, using

the same information?—Even if EM makes good

predictions, if it performs no better than standard

regression models, there would be less reason to use it.

However constructing an appropriate regression model

with relative abundance as the response variable is not

straightforward; predicted abundances must be con-

strained to the interval [0,1] and to sum to unity. The

multinomial logistic regression suggested by He (2010)

represents a viable (and arguably preferable) alternative

to EM when count data are available, but this does not

apply when only relative abundance data are available,

as is often the case for plant species surveys.

We constructed linear regression models with the

response variable given by the ratio of the relative

abundance of each species to a reference species.

Optimal Box-Cox (BC) transformations of the response

were used to maximize the normality of the residuals.

Violation of the normality assumption is possible for

this model; more serious violation was apparent for Tloc,

but for Treg and Tsm, deviations from normality were

minimal for both data sets. Constructing optimal

regression models that are comparable to EM is an

important area for future research (He 2010); our

models represent a first step. Defining pi as the relative

abundance of the ith species and p� as the reference

species, we can write the model as

BCðpi=p�Þ; Xbþ ei

where X is the trait matrix, b is the vector of regression

coefficients, and the ei are the Gaussian distributed

errors. We applied models to each local community

separately (to make a direct comparison to EM) and

chose the most locally abundant species as the reference

species in each community. This formulation allowed us

to scale relative abundances, based on the predicted

ratios, to sum to unity. The optimal Box-Cox transfor-

mation for the fynbos data corresponded to a logarith-

mic transformation, so this required that we add a small

quantity to relative abundance values that were ob-

served to be zero. For relative abundance values of zero,

we used 10�6 to circumvent the log(0) problem. Zero

abundances are likely to reflect Preston’s veil-line

concept (Preston 1948, Chisholm 2007), i.e., species

too rare to be sampled (smaller values led to the worst

predictions). Note that one strength of EM is that it does

not require such ad hoc assumptions. Finally, we chose

two different sets of predictors: (1) raw traits (model

R1), and (2) the squared difference between each species’

traits and CATs for the each community (model R2).

The latter provided a parallel to the constraints imposed

by the CATs in EM, because a species’ relationship to

the average trait set is expected to determine its

abundance. For both models, we made predictions

based on Tloc, Treg, and Tsm (R2 only).

Goodness of fit.—We assessed model results by

plotting predicted vs. observed abundance. All local

communities are shown on the same plot (Fig. 2);
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Appendix D: Figs. D8–11 show predictions for each

local community separately. We used two different

metrics to compare predictions with observations that

avoid the biases of the more traditional R2 (cf. Kvalseth

1985, McGill 2003). R2 values are sensitive to outliers

(i.e., most abundant species), insensitive to relative error

in points near the origin (i.e., rare species), and are

calculated with respect to the least-square regression

line, not the relevant 1:1 line. We report the information-

theory-based Hellinger divergence (H ) because it offers

a general way to compare two probability distributions

(Ali and Silvey 1966). The Hellinger distance measures

the distance between two discrete distributions, the

observed (O, with elements oi ) and predicted (P, with

elements pi ) RSAs, as follows:

HðO;PÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X

i

ð ffiffiffiffioi
p � ffiffiffiffi

pi
p Þ2

s
:

For intuitive interpretation, we define prediction success

h ¼ 1 � H, which ranges from 0 to 1, with the value 1

indicating that all points lie on the 1:1 line. Second, we

use the Pearson correlation coefficient between ranks (q)
because it also avoids assessing the fit with respect to the

best-fit line (as R2 does) and has relatively low sensitivity

to outliers. Haegeman and Loreau (2008) have suggested

using the root mean squared error, but this has no upper

bound and therefore makes interpretation less intuitive.

Appendix C provides additional details on fit metrics.

RESULTS

Below, we organize our results with respect to the

questions posed in Methods.

Are CATs predictable along environmental gradi-

ents?—The CATs demonstrated remarkable predictabil-

ity as quantifiers of constraints on local community

composition. Fig. 1 shows the regularity of the traits’

variation along the gradient for the fynbos data (mean r

¼ 0.83); see Shipley et al. (2006: Fig. 1) for similar

vineyard results (mean r ¼ 0.88).

How sensitive are abundance predictions to deviations

from observed CATs?—Tsm consistently had the lowest

fit (Figs. 2 and 3, Table 2; Appendix D: Figs. D1–7)

when used with the uniform prior, indicating EM’s

sensitivity to CAT prediction (compare to Treg, which

uses observed CATs). The lower accuracy for vineyard

abundance predictions under Tsm, compared to the

fynbos, occurred because these were largely driven by

only four traits (Supplement: Table S4) and the second

most important trait, aboveground vegetative mass, had

the worst predicted CATs (r¼ 0.70). Cross validation on

the CATs produced similar, but slightly worse, abun-

dance predictions than Tsm (Table 2; Appendix D:

Tables D2 and D3). The regular variation in CATs

along both successional and elevational gradients meant

that CATs splines changed minimally when omitting a

single community from the fit under cross validation.

Notably, the predictions for each local community in the

vineyard (Appendix D: Tables D1–3) were not as poor

as previously reported (Marks and Muller-Landau

2007).

How well does EM perform with varying species

richness?—The highest h values occurred for Tloc for

both data sets compared to Treg (Table 2; Appendix D:

Table D1). Treg predicted dominant species with similar

accuracy to Tloc; however, intermediate and rare species

were less accurately predicted (Fig. 3, Table 2; Appendix

D: Table D1). Despite lower accuracy for rare species,

they were seldom classified incorrectly as intermediate or

dominant species (Fig. 3); among all 704 possible

abundances predicted over both data sets, no more than

10 predictions had an absolute error of 10% or greater

across all models (Appendix D: Fig. D18). The decreased

accuracy resulted from increased trait vector similarity in

the regional (as opposed to local) pool of species. In the

fynbos, many dominant species, e.g., common proteoids,

ericoids, and restioids, had trait vectors similar to those

of rare species in the same guilds; thus additional species

in Treg can confound predictions.

Fig. 3 shows predictions for varying numbers of

species and traits, as summarized by h value surfaces

(Appendix D: Fig. D1, using q). Both data sets showed a

peak in h at intermediate richness. At richness values

above this peak, trait vector similarity confounded

predictions. Below this peak, truncating the regional

species pool removed species with unique trait vectors

that were necessary to fulfill the constraints without

substantially altering the RSA. For example, a species

with traits very similar to the CATs would be predicted

to have high abundance. But if this species were

removed from the model, a linear combination of the

remaining species’ trait vectors would be necessary to fill

the void, and these linear combinations could contort

RSA predictions, particularly if the omitted trait vector

were very dissimilar to any others.

How does trait vector similarity affect prediction

accuracy?—We found a positive relationship between

mean pairwise dissimilarity among species in a local

community and the prediction accuracy under Tloc

(Appendix D: Fig. D21; for the vineyard, slope ¼ 0.41,

R2 ¼ 0.07; for the fynbos, slope ¼ 1.1, R2 ¼ 0.51). This

means that communities with more similarity among

trait vectors were harder to predict with EM. Trait

vector similarity also decreased accuracy of species-level

predictions. Absolute prediction error for each species

increased when nearest neighbor distance (in trait space)

decreased. We found a negative relationship between the

change in absolute prediction error and the change in

nearest neighbor distance (Appendix D: Fig. D22; for

the vineyard, slope ¼�0.03, R2 ¼ 0.10; for the fynbos,

slope ¼�0.03, R2 ¼ 0.25), confirming our expectation

that increasing similarity in trait space decreases

prediction accuracy. Scatter about the regression lines

is not surprising because some species may be relatively

distinct in trait space, so an increase in trait vector
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similarity may not appreciably change EM’s ability to

distinguish that species from others.

How much trait information is necessary or sufficient?

Which traits provide the most predictive power? Do

quantitative vs. categorical traits matter?—Lagrange

multipliers for each trait are shown in the Supplement:

Table S4. The traits with the most predictive power (in

order, averaged across all models) in the vineyard were

stem mass, aboveground vegetative mass, and seed

number, whereas in the fynbos these were succulence,

flowering duration, and stem length/stem basal diame-

ter. Prediction accuracy increased using more traits (Fig.

3), but the vineyard surface was more plateau-like for

more than four traits. This occurred because four traits

primarily drove model fit (Appendix D: Table D2).

Categorical traits were comparable in predictive value to

quantitative traits (Appendix D: Table D5).

How do different priors affect prediction accuracy? Can

priors be used to model dispersal limitation effects?—

Predictions improved in all cases with informative

empirical priors that reflect null expectations about

regional or subregional abundance. We focus on the

predictions for Tsm because this test corresponds to

practical application of EM, although predictions for all

three Tloc and Treg were also improved using informative

priors (data not shown). In all cases, subregional priors

provided better predictions than regional priors, which

were better than uniform priors. The vineyard predic-

tions improved only minimally, whereas the fynbos data

were much better predicted, particularly for subregional

priors (Fig. 3).

Are predictions sensitive to intraspecific trait variation

or measurement error at the species level?—EM was

robust to perturbing the measured trait values, as h

values never decreased by more than 0.10 under

perturbation by 5% (Table 2; see Supplement: Table

S2 for results using q). Perturbation by 20% led to more

substantial decreases in the vineyard and demonstrated

that inaccurate measurements of traits or high intraspe-

cific variability can lead to substantial degradation of

abundance predictions. In the fynbos, h values decreased

less, but this was largely due to the fact that we did not

perturb the four categorical traits, and two of these

(perenniality and succulence) had among the largest

Lagrange multipliers. Intraspecific trait variation is

clearly a major obstacle for species-level predictions

along gradients, but our predictions appear to be robust

to at least some level of intraspecific variation or

measurement error in traits (,5%).

Does EM perform better than null models?—All EM

predictions were better than at least 98.4% of null

models (Table 2; Appendix D: Table D1) except for Tloc

in the vineyard and Tsm with the subregional prior for

the fynbos. Null models were more accurate in the

former case because there were relatively few degrees of

freedom in the low-richness vineyards. In the latter case,

the subregional priors had a particularly strong influ-

ence on predictions because the prior RSAs were

sufficiently similar to the true RSAs.

Does EM perform better than regression models, using

the same information?—For both regression models, R1

and R2, Tloc made the best predictions whereas Treg and

Tsm were comparable to one another (Table 2; Appendix

D: Figs. D19 and D20). EM performed better than, or

comparable to, both regression models in all cases

(Table 2; Appendix D: Table D1). Note that fitting

TABLE 2. Summary of model fit under different tests for the vineyard and fynbos data sets.

Test EM

Permutation test Perturbation test, median and 99% CI

Median and 99% CI Null . true
Recalculate CATs,

5% error
Observed CATs,

5% error
Observed CATs,

20% error

A) Vineyard

Tloc 0.92 0.88 (0.83–0.94) 7% 0.92 (0.91–0.92) 0.86 (0.82–0.88) 0.66 (0.60–0.73)
Treg 0.68 0.61 (0.52–0.69) 1.6% 0.67 (0.66–0.69) 0.65 (0.60–0.68) 0.50 (0.31–0.60)
Tsm 0.46 0.14 (0.09–0.32) 0% 0.45 (0.43–0.46) 0.45 (0.43–0.46) 0.39 (0.23–0.44)
Tsm, regional prior 0.46 0.15 (0.08–0.32) 0% 0.45 (0.44–0.46) 0.44 (0.42–0.45) 0.39 (0.23–0.46)
Tsm, subreg. prior 0.48 0.17 (0.11–0.38) 0% 0.48 (0.46–0.48) 0.46 (0.44–0.48) 0.40 (0.21–0.47)

B) Fynbos

Tloc 0.76 0.65 (0.59–0.71) 0% 0.76 (0.75–0.77) 0.67 (0.66–0.70) 0.73 (0.66–0.75)
Treg 0.55 0.46 (0.42–0.51) 0% 0.56 (0.54–0.56) 0.56 (0.54–0.56) 0.54 (0.52–0.56)
Tsm 0.51 0.46 (0.42–0.55) 0% 0.51 (0.51–0.52) 0.50 (0.50–0.51) 0.51 (0.49–0.52)
Tsm, regional prior 0.58 0.53 (0.50–0.57) 0% 0.57 (0.57–0.59) 0.57 (0.57–0.58) 0.58 (0.54–0.59)
Tsm, subreg. prior 0.63 0.62 (0.61–0.63) 6.6% 0.62 (0.61–0.63) 0.62 (0.61–0.63) 0.58 (0.61–0.63)

Notes: Fit of predicted and observed relative abundance was measured with h¼ 1� Hellinger divergence (median and 99% CI).
Tloc, Treg, and Tsm refer, respectively, to tests with local and regional species pools and regional pools using smoothed splines; Tsm

used predicted CATs, whereas Tloc and Treg use observed CATs. For the permutation tests, the percentage of null models better
than the true model is given. For the perturbation tests, we considered two cases: (1) observed CATs were used with permuted trait
matrix, and (2) CATs were recalculated based on the permuted trait matrix. Regression model R1 regresses abundance on raw trait
values; R2 uses the squared difference between each species’ traits and CATs for the each local community. For the perturbation
tests, 5% (or 20%) error indicates that perturbed traits were drawn from a uniform distribution ranging from 5% (or 20%) below to
5% (or 20%) above observed values for each trait. Regression model R1 has entries of ‘‘NA’’ (not applicable) for tests incorporating
CATs because R1 does not use CATs. Regression models have ‘‘NA’’ entries for nonuniform priors because we use maximum-
likelihood models that do not incorporate this information.
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regression models required ad hoc assumptions about

observed zeroes, unlike EM. Also, because there were

more traits than species (only) under Tloc for the

vineyard data, seven of 12 communities were uniquely

determined by the regression models.

DISCUSSION

Functional traits effectively predict

community composition

By using a functional approach, EM shows that

generality in community ecology emerges from patterns

of functional trait distributions along ecological gradi-

ents (c.f. McGill et al. 2006). Species’ functional traits

mediate their interaction with the surrounding commu-

nity through habitat filtering. Thus, modeling functional

patterns (CATs) not only yields a more tractable, lower-

dimensional problem than species-level models, but also

reflects our mechanistic understanding of species inter-

actions. We show that CATs respond strongly and

relatively smoothly to ecological gradients and that their

usefulness as predictors is robust to realistic levels of

intraspecific variation and measurement error. Addi-

tionally, suites of CATs demonstrate a desirable amount

of sensitivity in their ability to differentiate communi-

ties; abundance predictions are robust to minor varia-

tions in CATs, but differences among CATs along

gradients successfully distinguish communities. EM

links species-level predictions back to the functional

trait patterns that are modeled by CATs.

The generality of EM hinges on the predictability of

CAT variation along ecological gradients. If traits are

important to habitat filtering, and CATs describe the

biological response to environmental conditions, they

should vary regularly along environmental gradients.

Irregular variation in CATs could reflect under-sam-

pling, traits under weak selection, missing environmen-

tal variables defining the gradient, or inadequacy of

CATs to characterize niche constraints. Shipley et al.

(2006) demonstrated good correlation of CATs with

spline fits for the vineyard data, and we have shown that

CATs for the more diverse fynbos have similarly good

fits (Fig. 1). The fact that some variation in CATs about

the trend line remains is not surprising, because we do

not necessarily expect strong selection on all traits at all

points along a gradient.

In spite of the strong evidence that CATs reflect

habitat filtering at some level, questions remain. First,

CAT values are heavily influenced by dominant species.

Dominant species are typically the most important in

terms of community-level processes, so CATs reason-

ably capture broadscale changes in communities. But as

Westoby and Wright (2006) have pointed out, a great

deal of trait variation exists within communities, and

CATs do not capture subtle variation among rare

species. Considering trait variance to account for niche

differentiation within communities, or using CATs that

are not weighted by abundance (to increase the influence

of rare species on constraints), could serve to address

these concerns. Second, the abundances used to calcu-

late CATs contain all processes that affect abundance,

not just niche-based processes. Niche-based processes

should dominate a community if the CATs are used to

infer something about habitat suitability. We postulate

that when the CATs follow a trend, as in our data (Fig.

1), they indicate habitat filtering as a dominant

mechanism driving abundance patterns.

The predictions of our models are sensitive to the

CATs; the difference between Treg, where observed

CATs are used, and Tsm, where predicted CATs are

used, indicates that minor deviations in the CATs lead

to different predicted abundances (Figs. 2 and 3). We

anticipate that more robust abundance predictions will

result from splines fit with more communities; regres-

sions using 8–12 points can be relatively sensitive to

sample bias. Nonetheless, from the two contrasting

systems that we studied, we conclude that CAT

variation along the gradient captures the influence of

environmental filtering on local community composition

and the constraints they impose are sufficient to

differentiate local communities.

Our results using spline-predicted CATs (Tsm) and

cross validation address the robustness of predicted

RSAs. Unlike Shipley et al. (2006), we found that

predicted abundance using predicted CATs with both

data sets leads to decreased prediction accuracy (Tsm,

Fig. 2; compare to r ¼ 0.97 and r ¼ 0.96 reported by

Shipley et al. 2006). However, Shipley et al. smoothed

both the empirical and predicted abundances, whereas

we did not. Their success with predicted CATs is largely

due to the common shift of high-influence empirical and

predicted abundances under smoothing. However, the

reduced accuracy of Tsm compared to Treg is not

detrimental; this simply indicates that the gradient must

be well defined. To demonstrate this, note that our

fynbos predictions showed much higher similarity

between the accuracy of Treg and Tsm (Fig. 2) because

the traits with the largest Lagrange multipliers (peren-

TABLE 2. Extended.

Cross
validation

Regression
model 1

Regression
model 2

NA 0.92 0.92
NA 0.58 0.57
0.37 NA 0.57
0.37 NA NA
0.37 NA NA

NA 0.77 0.77
NA 0.51 0.51
0.44 NA 0.51
0.49 NA NA
0.50 NA NA
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niality, succulence, height) were among the best-predict-

ed along the gradient.

Trait vector similarity and prediction accuracy

One challenge in EM is to understand the factors

affecting prediction accuracy. A key to predictive

accuracy lies in the uniqueness of the species’ trait

vectors. To understand how trait vectors affect predic-

tions, consider a number of species with similar traits

(e.g., belonging to a functional group) that coexist in a

regional community. EM predicts a similar abundance

for each species. For such a group, a large feasible set

exists, which includes all possible combinations of

abundances. In contrast, if a species pool with distinct

traits were subjected to the same CATs, they would

experience stronger constraints. This contrast can be

observed by comparing Tloc, which contains the

minimum number of species to exactly satisfy the

constraints, to Treg, where additional species with

potentially similar trait vectors are included (Fig. 2). If

species’ true functional similarity is well characterized by

the measured traits, dissimilarity among traits reduces

the volume of the feasible set. However, interpretations

of trait vector similarity must be made cautiously

because many species may seem to be similar based on

the measured traits, while their unmeasured traits may

differ greatly.

In the context of what is known about fynbos ecology,

we hypothesize that the trait vector similarity in the

fynbos data represents actual functional redundancy.

Co-occurrence of ecologically similar species in Cape

Floristic shrubland communities, represented by pro-

teoids (large woody shrubs similar to the Proteaceae),

ericoids (small woody shrubs similar to the Ericaceae),

and restioids (graminoids similar to the Restionaceae),

has been widely noted at different spatial scales (e.g.,

Cowling et al. 1994). The contrast in prediction success

between the vineyard and fynbos data can be explained

in terms of the greater trait vector similarity of the

fynbos (Appendix D: Fig. D21). Although we expect the

fynbos to have higher functional redundancy, the much

larger sample size in the local communities of the fynbos

probably contributes to an increase in the diversity

sampled compared to the vineyard data (respectively, 3–

7 samples of 53 10 m each per local community, vs. one

0.53 0.5 m sample). This higher local diversity, coupled

with trait vector similarity, produces the poorer predic-

tions of Tloc in the fynbos.

The apparent widespread functional redundancy in

some systems, like the fynbos, may represent an

insurmountable barrier to accurate species level predic-

tions. Although our predictions probably would im-

prove with additional traits and more complete sampling

along the elevational gradient, we believe that true

functional redundancy sets an upper bound on the

accuracy of niche-based predictions. It may be the case

that constraints operate only on functional groups and

that abundance patterns within functional groups are

dominated by stochastic processes. Thus the best-case

scenario for a deterministic model is not perfect

predictions, but one that provides some reasonable

way of averaging over all the possibilities introduced by

stochasticity in local community samples. EM solves this

problem by providing a robust prediction method that

identifies the only unbiased RSA with respect to the

constraints. Indeed, the difficulty in predicting the

abundance of particular species is anticipated by a

functional approach to community ecology because it

asserts that traits, and not species, show the strongest

correlation with environmental conditions. Hence the

CATs capture broad patterns in traits and EM links

these patterns back to the individual species level to the

extent possible.

Using informative priors with EM

One possibility for improving predictions based on

prior expectations is to use nonuniform priors that are

either informative or based on null model expectations

(see also Shipley 2009c, Sonnier et al. 2010). Using the

regional RSA as the prior represents the null hypothesis

that the local RSA is expected to be equivalent to the

regional RSA in the absence of constraints. Priors can

also be interpreted as informative if dispersal limitation

is a factor; one can construct the prior RSA from a

subset of sites proximate to the site of interest, as we

have done with subregional priors. Informative priors

can also reflect unmeasured environmental variation

(not encompassed in the gradient) that might preferen-

tially influence the abundance of some species.

Our interpretation of using regional and subregional

priors is supported by the contrasting results from the

two data sets we analyzed and their respective ecology.

The vineyard data were better predicted by the regional

prior than the uniform prior, providing further evidence

for this system that regional abundance substantially

affects local community abundance (Lavorel and

Lebreton 1992). The plots for the vineyard data are

within a few kilometers of each other, dispersal

limitation is not known to be particularly important in

this successional system, and local composition is more

closely related to regional composition than to local seed

banks (Lavorel and Lebreton 1992), so its not surprising

that subregional priors did not improve on predictions

from regional priors for this data set. In contrast, the

fynbos data are collected over a range of .50 km and

dispersal limitation is a well-known factor in fynbos

(Cowling et al. 1997, Latimer et al. 2009); hence, we

expect the subregional prior to outperform the regional

prior in this system. Thus, for ecological inference, we

advocate using EM with Tsm and exploring suitable

priors that capture regional abundance patterns at the

appropriate spatial scale.

Guidelines for using EM for ecological data

Important decisions and assumptions must be made

that may be unique to EM when preparing a data set for
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analysis. In the Supplement, we provide example R code

(R Development Core Team 2009) that can be applied

to an arbitrary data set. First, the species pool is

truncated to focus on only the most regionally abundant

species, following other studies that focus on commu-

nity-level function (Garnier et al. 2004, Baraloto et al.

2010). Due to this truncation, we point out that EM is

most suitable for analyzing broad functional trait and

abundance patterns in relatively dominant species. Rare

species present a sampling problem (Preston’s veil line;

Chisholm 2007); because they contribute very little to

CATs (Lavorel et al. 2008), we would not expect EM to

tell us much more than broadly distinguishing between

rare and dominant species. Further, truncation increases

the signal-to-noise ratio in community-level patterns of

response to habitat filtering by removing rare species

whose abundance may depend primarily on stochastic

factors (e.g., lottery dynamics). What is the ‘‘right’’

number of species? Roxburgh and Mokany (2007) have

explored this problem using simulations to determine a

sufficient number of degrees of freedom to make

nontrivial predictions; both data sets that we examined

have sufficient degrees of freedom to avoid spurious

predictions (confirmed by null models; Table 2). We

chose species above a threshold of 0.05% regional

abundance in the fynbos to represent abundant species,

based on a distinct drop-off in abundance for species

below this level.

Which are the ‘‘right’’ traits to use? This question

pervades the functional trait literature (e.g., Garnier et

al. 2004, Petchey and Gaston 2006). To provide

information on habitat filtering, traits must vary along

the gradient of interest. Starting with a large pool of

traits, one can omit traits with the lowest Lagrange

multiplier values. Given traits, one can test for the

significance of the predictions using the permutation

tests just discussed. Finally, what is the consequence of

omitting important traits? Information theory postulates

that other RSAs will be more likely than the EM-

predicted RSA if important trait information is missing

(Shipley et al. 2007). We suggest that the importance of

missing traits can be ascertained from the accuracy of

Tloc; if the model fits poorly when the observed CATs

are supplied and the effects of trait vector similarity are

minimized (compared to Treg), there should be addi-

tional traits that lead to variation in abundance.

Finally, we draw attention to the two sources of

criticism in EM: circularity (Marks and Muller-Landau

2007) and the number of degrees of freedom (Haegeman

and Loreau 2008). It is important to note that the tests

we propose focus on model-fitting diagnostics that use

observed CATs directly (Tloc, Treg) or indirectly (Tsm);

i.e., they evaluate model fit rather than out-of-sample

prediction. However, noncircular applications are pos-

sible when CATs are predicted that are not used to fit

CAT splines along gradients. We demonstrate this using

cross validation on CATs and point out that use of

holdout data avoids the circularity issue (Table 2). We

advocate maximizing the number of degrees of freedom

by minimizing the number of traits necessary to

adequately explain abundance patterns in a particular

application. One can test for sufficient degrees of

freedom using the permutation tests previously de-

scribed; excessively constrained models will perform no

better than null models. In general, our models have an

acceptable number of degrees of freedom compared to

traditional models (e.g., regression), but many fewer

than found in many physics applications of MEF

(Haegeman and Loreau 2008). By subtracting the

number of constraints (number of traits plus normali-

zation) from the number of species, we find that the

vineyard data had 21 degrees of freedom and the fynbos

had 32, and they are unequivocally not over-determined

under Treg and Tsm (cf. Haegeman and Loreau 2008).

Conclusions and future directions

While we have demonstrated that EM can provide

ecological insight and reasonably accurate predictions,

some questions remain to be answered before EM can

become an accepted ecological tool. First, a better

understanding of CATs and their ability to quantify

community-level selection is necessary. How stable are

CATs among communities under the same environmen-

tal conditions (cf. Acosta et al. 2008)? Is an average trait

value adequate to define habitat filtering across the

spectrum of local communities? Or is intracommunity

trait variability comparable to intercommunity variabil-

ity (i.e., large trait variance among co-occurring species),

as might be expected under niche differentiation (cf.

Westoby and Wright 2006)? The answers to these

questions will depend on the spatial scale of the samples,

but our results suggest that, despite noise and process

variability, CATs can provide useful predictions of

community composition across typical ecological gradi-

ents.

The fact that we have obtained meaningful results

using a handful of easily observed and scored traits that

do not necessarily encompass all attributes of a plant’s

biology is testimony to the potential utility of this

approach to predict community abundance patterns

along ecological gradients. The challenge remains,

however, to incorporate EM into an explicitly spatial

model with historical and/or stochastic processes that

account for recruitment limitation. Informative priors

appear to be a step in the right direction. He (2010) has

recently noted a connection between EM and multino-

mial logistic regression; formulating a regression model

in a Bayesian framework would readily incorporate

informative priors and explicit spatial effects to provide

a competing model for EM and represents an important

avenue for future research.

EM provides a first step toward the goal of finding

general rules of community ecology using a functional

approach along ecological gradients (c.f. McGill et al.

2006). EM’s novel ability to synthesize functional trait

distributions along environmental gradients and to
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generate testable predictions provides a much needed

quantitative framework to bridge the gap between
functional traits and community patterns.
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Shipley, B., D. Vile, and É. Garnier. 2006. From plant traits to
plant communities: a statistical mechanistic approach to
biodiversity. Science 314:812–814.
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